Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Crohns Colitis ; 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38069679

RESUMO

BACKGROUND & AIMS: No effective therapeutic intervention exists for intestinal fibrosis in Crohn's disease [CD]. We characterised fibroblast subtypes, epigenetic and metabolic changes, and signalling pathways in CD fibrosis to inform future therapeutic strategies. METHODS: We undertook immunohistochemistry, metabolic, signalling pathway and Epigenetic [Transposase-Accessible Chromatin using sequencing] analyses associated with collagen production in CCD-18Co intestinal fibroblasts and primary fibroblasts isolated from stricturing [SCD] and non-stricturing [NSCD] CD small intestine. SCD/ NSCD fibroblasts were cultured with TGFß and valproic acid [VPA]. RESULTS: Stricturing CD was characterised by distinct histone deacetylase [HDAC] expression profiles, particularly HDAC1, HDAC2, and HDAC7. As a proxy for HDAC activity, reduced numbers of H3K27ac+ cells were found in SCD compared to NSCD sections. Primary fibroblasts had increased extracellular lactate [increased glycolytic activity] and intracellular hydroxyproline [increased collagen production] in SCD compared to NSCD cultures. The metabolic effect of TGFß-stimulation was reversed by the HDAC inhibitor VPA. SCD fibroblasts appear "metabolically primed" and responded more strongly to both TGFß and VPA. Treatment with VPA revealed TGFß-dependent and independent Collagen-I production in CCD-18Co cells and primary fibroblasts. VPA altered the epigenetic landscape with reduced chromatin accessibility at the COL1A1 and COL1A2 promoters. CONCLUSIONS: Increased HDAC expression profiles, H3K27ac hypoacetylation, a significant glycolytic phenotype, and metabolic priming, characterise SCD-derived as compared to NSCD fibroblasts. Our results reveal a novel epigenetic component to Collagen-I regulation and TGFß-mediated CD fibrosis. HDAC inhibitor therapy may 'reset' the epigenetic changes associated with fibrosis.

2.
Mol Cell ; 83(23): 4202-4204, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38065060

RESUMO

In a recent issue of Cell, Mossmann et al.1 describe a novel role for an emerging cancer target, RNA-binding motif protein 39, as a metabolic sensor of the conditionally essential amino acid arginine.


Assuntos
Neoplasias , Proteínas de Ligação a RNA , Humanos , Processamento Alternativo , Regulação da Expressão Gênica , Neoplasias/genética , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo
3.
Cell Rep ; 42(10): 113307, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37858464

RESUMO

Ovarian high-grade serous carcinoma (HGSC) is the most common subtype of ovarian cancer with limited therapeutic options and a poor prognosis. In recent years, poly-ADP ribose polymerase (PARP) inhibitors have demonstrated significant clinical benefits, especially in patients with BRCA1/2 mutations. However, acquired drug resistance and relapse is a major challenge. Indisulam (E7070) has been identified as a molecular glue that brings together splicing factor RBM39 and DCAF15 E3 ubiquitin ligase resulting in polyubiquitination, degradation, and subsequent RNA splicing defects. In this work, we demonstrate that the loss of RBM39 induces splicing defects in key DNA damage repair genes in ovarian cancer, leading to increased sensitivity to cisplatin and various PARP inhibitors. The addition of indisulam also improved olaparib response in mice bearing PARP inhibitor-resistant tumors. These findings demonstrate that combining RBM39 degraders and PARP inhibitors is a promising therapeutic approach to improve PARP inhibitor response in ovarian HGSC.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Feminino , Humanos , Animais , Camundongos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Proteína BRCA1/genética , Mutação , Fatores de Processamento de RNA/genética , RNA , Proteína BRCA2/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Splicing de RNA , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico
4.
Clin Sci (Lond) ; 136(19): 1405-1423, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36156078

RESUMO

Intestinal fibrosis and stricture formation is an aggressive complication of Crohns disease (CD), linked to increased morbidity and costs. The present study investigates the contribution of Wingless-Int-1 (Wnt) signalling to intestinal fibrogenesis, considers potential cross-talk between Wnt and transforming growth factor ß1 (TGFß) signalling pathways, and assesses the therapeutic potential of small-molecule Wnt inhibitors. ß-catenin expression was explored by immunohistochemistry (IHC) in formalin-fixed paraffin embedded (FFPE) tissue from patient-matched nonstrictured (NSCD) and strictured (SCD) intestine (n=6 pairs). Functional interactions between Wnt activation, TGFß signalling, and type I collagen (Collagen-I) expression were explored in CCD-18Co cells and primary CD myofibroblast cultures established from surgical resection specimens (n=16) using small-molecule Wnt inhibitors and molecular techniques, including siRNA-mediated gene knockdown, immunofluorescence (IF), Wnt gene expression arrays, and western blotting. Fibrotic SCD tissue was marked by an increase in ß-catenin-positive cells. In vitro, activation of Wnt-ß-catenin signalling increased Collagen-I expression in CCD-18Co cells. Conversely, ICG-001, an inhibitor of ß-catenin signalling, reduced Collagen-I expression in cell lines and primary CD myofibroblasts. TGFß increased ß-catenin protein levels but did not activate canonical Wnt signalling. Rather, TGFß up-regulated WNT5B, a noncanonical Wnt ligand, and the Wnt receptor FZD8, which contributed directly to the up-regulation of Collagen-I through a ß-catenin-independent mechanism. Treatment of CCD-18Co fibroblasts and patient-derived myofibroblasts with the FZD8 inhibitor 3235-0367 reduced extracellular matrix (ECM) expression. Our data highlight small-molecule Wnt inhibitors of both canonical and noncanonical Wnt signalling, as potential antifibrotic drugs to treat SCD intestinal fibrosis. They also highlight the importance of the cross-talk between Wnt and TGFß signalling pathways in CD intestinal fibrosis.


Assuntos
Doença de Crohn , beta Catenina , Colágeno Tipo I/metabolismo , Doença de Crohn/tratamento farmacológico , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Fibrose , Formaldeído/metabolismo , Humanos , Intestinos , Ligantes , Miofibroblastos/metabolismo , RNA Interferente Pequeno/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo
5.
Nat Commun ; 13(1): 1380, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296644

RESUMO

Neuroblastoma is the most common paediatric solid tumour and prognosis remains poor for high-risk cases despite the use of multimodal treatment. Analysis of public drug sensitivity data showed neuroblastoma lines to be sensitive to indisulam, a molecular glue that selectively targets RNA splicing factor RBM39 for proteosomal degradation via DCAF15-E3-ubiquitin ligase. In neuroblastoma models, indisulam induces rapid loss of RBM39, accumulation of splicing errors and growth inhibition in a DCAF15-dependent manner. Integrative analysis of RNAseq and proteomics data highlight a distinct disruption to cell cycle and metabolism. Metabolic profiling demonstrates metabolome perturbations and mitochondrial dysfunction resulting from indisulam. Complete tumour regression without relapse was observed in both xenograft and the Th-MYCN transgenic model of neuroblastoma after indisulam treatment, with RBM39 loss, RNA splicing and metabolic changes confirmed in vivo. Our data show that dual-targeting of metabolism and RNA splicing with anticancer indisulam is a promising therapeutic approach for high-risk neuroblastoma.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Neuroblastoma , Linhagem Celular Tumoral , Criança , Humanos , Proteína Proto-Oncogênica N-Myc , Recidiva Local de Neoplasia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Splicing de RNA/genética , Sulfonamidas
6.
Br J Pharmacol ; 179(12): 2795-2812, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33238031

RESUMO

RNA-binding motif protein 39 (RBM39) is an RNA-binding protein involved in transcriptional co-regulation and alternative RNA splicing. Recent studies have revealed that RBM39 is the unexpected target of aryl sulphonamides, which act as molecular glues between RBM39 and the DCAF15-associated E3 ubiquitin ligase complex leading to selective degradation of the target. Loss of RBM39 leads to aberrant splicing events and differential gene expression, thereby inhibiting cell cycle progression and causing tumour regression in a number of preclinical models. Many clinical studies have shown that aryl sulphonamides were well tolerated, but their clinical performance was limited due to an insufficient understanding of the target, RBM39 biology and a lack of predictive biomarkers. This review summarises the current knowledge of RBM39 function and discusses the therapeutic potential of this spliceosome target in cancer therapy. LINKED ARTICLES: This article is part of a themed issue on New avenues in cancer prevention and treatment (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.12/issuetoc.


Assuntos
Neoplasias , Processamento Alternativo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Motivos de Ligação ao RNA , Proteínas de Ligação a RNA/metabolismo , Sulfonamidas/farmacologia
7.
Br J Cancer ; 122(9): 1298-1308, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32152504

RESUMO

BACKGROUND: Akt signalling regulates glycolysis and drives the Warburg effect in cancer, thus decreased glucose utilisation is a pharmacodynamic marker of Akt inhibition. However, cancer cells can utilise alternative nutrients to glucose for energy such as lactate, which is often elevated in tumours together with increased acidity. We therefore hypothesised that lactic acidosis may confer resistance to Akt inhibition. METHODS: The effect of the pan-Akt inhibitor uprosertib (GSK2141795), on HCT116 and LS174T colon cancer cells was evaluated in the presence and absence of lactic acid in vitro. Expression of downstream Akt signalling proteins was determined using a phosphokinase array and immunoblotting. Metabolism was assessed using 1H nuclear magnetic resonance spectroscopy, stable isotope labelling and gas chromatography-mass spectrometry. RESULTS: Lactic acid-induced resistance to uprosertib was characterised by increased cell survival and reduced apoptosis. Uprosertib treatment reduced Akt signalling and glucose uptake irrespective of lactic acid supplementation. However, incorporation of lactate carbon and enhanced respiration was maintained in the presence of uprosertib and lactic acid. Inhibiting lactate transport or oxidative phosphorylation was sufficient to potentiate apoptosis in the presence of uprosertib. CONCLUSIONS: Lactic acidosis confers resistance to uprosertib, which can be reversed by inhibiting lactate transport or oxidative metabolism.


Assuntos
Acidose Láctica/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Proteína Oncogênica v-akt/genética , Acidose Láctica/genética , Acidose Láctica/metabolismo , Acidose Láctica/patologia , Inibidores da Angiogênese/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Diaminas/farmacologia , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Células HCT116 , Humanos , Ácido Láctico/farmacologia , Proteína Oncogênica v-akt/antagonistas & inibidores , Fosforilação Oxidativa/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Transdução de Sinais/efeitos dos fármacos
8.
J Cell Mol Med ; 22(11): 5617-5628, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30188001

RESUMO

Intestinal mesenchymal cells deposit extracellular matrix in fibrotic Crohn's disease (CD). The contribution of epithelial to mesenchymal transition (EMT) to the mesenchymal cell pool in CD fibrosis remains obscure. The miR-200 family regulates fibrosis-related EMT in organs other than the gut. E-cadherin, cytokeratin-18 and vimentin expression was assessed using immunohistochemistry on paired strictured (SCD) and non-strictured (NSCD) ileal CD resections and correlated with fibrosis grade. MiR-200 expression was measured in paired SCD and NSCD tissue compartments using laser capture microdissection and RT-qPCR. Serum miR-200 expression was also measured in healthy controls and CD patients with stricturing and non-stricturing phenotypes. Extra-epithelial cytokeratin-18 staining and vimentin-positive epithelial staining were significantly greater in SCD samples (P = 0.04 and P = 0.03, respectively). Cytokeratin-18 staining correlated positively with subserosal fibrosis (P < 0.001). Four miR-200 family members were down-regulated in fresh SCD samples (miR-141, P = 0.002; miR-200a, P = 0.002; miR-200c, P = 0.001; miR-429; P = 0.004); miR-200 down-regulation in SCD tissue was localised to the epithelium (P = 0.001-0.015). The miR-200 target ZEB1 was up-regulated in SCD samples (P = 0.035). No difference in serum expression between patient groups was observed. Together, these observations suggest the presence of EMT in CD strictures and implicate the miR-200 family as regulators. Functional studies to prove this relationship are now warranted.


Assuntos
Antígenos CD/genética , Caderinas/genética , Doença de Crohn/genética , Fibrose/genética , MicroRNAs/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Adulto , Doença de Crohn/patologia , Doença de Crohn/cirurgia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/genética , Feminino , Fibrose/patologia , Fibrose/cirurgia , Regulação da Expressão Gênica/genética , Humanos , Íleo/patologia , Íleo/ultraestrutura , Queratina-18/genética , Masculino , Vimentina/genética
9.
Oncotarget ; 8(48): 84258-84275, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29137421

RESUMO

The estrogen receptor ERß is the predominant ER subtype expressed in normal well-differentiated colonic epithelium. However, ERß expression is lost under the hypoxic microenvironment as colorectal cancer (CRC) malignancy progresses. This raises questions about the role of signalling through other estrogen receptors such as ERα or G-protein coupled estrogen receptor (GPER, GPR30) by the estrogen 17ß-estradiol (E2) under hypoxic conditions after ERß is lost in CRC progression. We tested the hypothesis that E2 or hypoxia can act via GPER to contribute to the altered phenotype of CRC cells. GPER expression was found to be up-regulated by hypoxia and E2 in a panel of CRC cell lines. The E2-modulated gene, Ataxia telangiectasia mutated (ATM), was repressed in hypoxia via GPER signalling. E2 treatment enhanced hypoxia-induced expression of HIF1-α and VEGFA, but repressed HIF1-α and VEGFA expression under normoxic conditions. The expression and repression of VEGFA by E2 were mediated by a GPER-dependent mechanism. E2 treatment potentiated hypoxia-induced CRC cell migration and proliferation, whereas in normoxia, cell migration and proliferation were suppressed by E2 treatment. The effects of E2 on these cellular responses in normoxia and hypoxia were mediated by GPER. In a cohort of 566 CRC patient tumor samples, GPER expression significantly associated with poor survival in CRC Stages 3-4 females but not in the stage-matched male population. Our findings support a potentially pro-tumorigenic role for E2 in ERß-negative CRC under hypoxic conditions transduced via GPER and suggest a novel route of therapeutic intervention through GPER antagonism.

10.
Cell Tissue Res ; 368(2): 325-335, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28190086

RESUMO

The miR-29 family is involved in fibrosis in multiple organs, including the intestine where miR-29b facilitates TGF-ß-mediated up-regulation of collagen in mucosal fibroblasts from Crohn's disease (CD) patients. Myeloid cell leukemia-1 (MCL-1), a member of the B-cell CLL/Lymphoma 2 (BCL-2) apoptosis family, is involved in liver fibrosis and is targeted by miR-29b via its 3'-UTR in cultured cell lines. We investigate the role of MCL-1 and miR-29b in primary intestinal fibroblasts and tissue from stricturing CD patients. Transfection of CD intestinal fibroblasts with pre-miR-29b resulted in a significant increase in the mRNA expression of MCL-1 isoforms [MCL-1Long (L)/Extra Short (ES) and MCL-1Short (S)], although MCL-1S was expressed at significantly lower levels. Western blotting predominantly detected the anti-apoptotic MCL-1L isoform, and immunofluorescence showed that staining was localised in discrete nuclear foci. Transfection with pre-miR-29b or anti-miR-29b resulted in a significant increase or decrease, respectively, in MCL-1L foci. CD fibroblasts treated with IL-6 and IL-8, inflammatory cytokines upstream of MCL-1, increased the total mass of MCL-1L-positive foci. Furthermore, transfection of intestinal fibroblasts with pre-miR-29b resulted in an increase in mRNA and protein levels of IL-6 and IL-8. Finally, immunohistochemistry showed reduced MCL-1 protein expression in fibrotic CD samples compared to non-stricturing controls. Together, our findings suggest that induction of MCL-1 by IL-6/IL-8 may surmount any direct down-regulation by miR-29b via its 3'-UTR. We propose that an anti-fibrotic miR-29b/IL-6 IL-8/MCL-1L axis may influence intestinal fibrosis in CD. In the future, therapeutic modulation of this pathway might contribute to the management of fibrosis in CD.


Assuntos
Doença de Crohn/genética , Doença de Crohn/patologia , Interleucina-6/metabolismo , Interleucina-8/metabolismo , MicroRNAs/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Regiões 3' não Traduzidas/genética , Sequência de Bases , Sítios de Ligação , Fibroblastos/metabolismo , Fibrose , Humanos , Interleucina-6/genética , Interleucina-8/genética , Intestinos/patologia , MicroRNAs/genética , Modelos Biológicos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transfecção , Regulação para Cima/genética
11.
Hum Mol Genet ; 26(8): 1552-1564, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28207045

RESUMO

Solid tumours have oxygen gradients and areas of near and almost total anoxia. Hypoxia reduces sensitivity to 5-fluorouracil (5-FU)-chemotherapy for colorectal cancer (CRC). MicroRNAs (miRNAs) are hypoxia sensors and were altered consistently in six CRC cell lines (colon cancer: DLD-1, HCT116 and HT29; rectal cancer: HT55, SW837 and VACO4S) maintained in hypoxia (1 and 0.2% oxygen) compared with normoxia (20.9%). CRC cell lines also showed altered amino acid metabolism in hypoxia and hypoxia-responsive miRNAs were predicted to target genes in four metabolism pathways: beta-alanine; valine, leucine, iso-leucine; aminoacyl-tRNA; and alanine, aspartate, glutamate. MiR-210 was increased in hypoxic areas of CRC tissues and hypoxia-responsive miR-21 and miR-30d, but not miR-210, were significantly increased in 5-FU resistant CRCs. Treatment with miR-21 and miR-30d antagonists sensitized hypoxic CRC cells to 5-FU. Our data highlight the complexity and tumour heterogeneity caused by hypoxia. MiR-210 as a hypoxic biomarker, and the targeting of miR-21 and miR-30d and/or the amino acid metabolism pathways may offer translational opportunities.


Assuntos
Neoplasias Colorretais/genética , MicroRNAs/biossíntese , Aminoácidos/metabolismo , Apoptose/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Fluoruracila/administração & dosagem , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Heterogeneidade Genética , Células HCT116 , Humanos , MicroRNAs/genética , Oxigênio/metabolismo
12.
J Natl Cancer Inst ; 108(6): djv394, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26719345

RESUMO

BACKGROUND: The antibody cetuximab, targeting epidermal growth factor receptor (EGFR), is used to treat metastatic colorectal cancer (mCRC). Clinical trials suggest reduced benefit from the combination of cetuximab with oxaliplatin. The aim of this study was to investigate potential negative interactions between cetuximab and oxaliplatin. METHODS: Thiazolyl blue tetrazolium bromide (MTT) assay and Calcusyn software were used to characterize drug interactions. Reactive oxygen species (ROS) were measured by flow cytometry and real-time polymerase chain reaction oxidative stress arrays identified genes regulating ROS production. Chromatin immunoprecipitation (ChIP) measured signal transducer and activator of transcription 1 (STAT-1) binding to dual oxidase 2 (DUOX2) promoter. SW48, DLD-1 KRAS wild-type cell lines and DLD-1 xenograft models exposed to cetuximab, oxaliplatin, or oxaliplatin + cetuximab (control [saline]; n = 3 mice per treatment group) were used. Statistical tests were two-sided. RESULTS: Cetuximab and oxaliplatin exhibited antagonistic effects on cellular proliferation and apoptosis (caspase 3/7 activity reduced by 1.4-fold, 95% confidence interval [CI] = 0.78 to 2.11, P = .003) as opposed to synergistic effects observed with the irinotecan metabolite 7-Ethyl-10-hydroxycamptothecin (SN-38). Although both oxaliplatin and SN-38 produced ROS, only oxaliplatin-mediated apoptosis was ROS dependent. Production of ROS by oxaliplatin was secondary to STAT1-mediated transcriptional upregulation of DUOX2 (3.1-fold, 95% CI = 1.75 to 2.41, P < .001). Inhibition of DUOX2 induction and p38 activation by cetuximab reduced oxaliplatin cytotoxicity. CONCLUSIONS: Inhibition of STAT1 and DUOX2-mediated ROS generation by cetuximab impairs p38-dependent apoptosis by oxaliplatin in preclinical models and may contribute to reduced efficacy in clinical settings. Understanding the rationale for unexpected trial results will inform improved rationales for combining EGFR inhibitors with chemotherapeutic agents in future therapeutic use.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Cetuximab/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Compostos Organoplatínicos/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cetuximab/uso terapêutico , Imunoprecipitação da Cromatina , Oxidases Duais , Xenoenxertos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NADPH Oxidases/metabolismo , Compostos Organoplatínicos/uso terapêutico , Oxaliplatina , Fator de Transcrição STAT1/metabolismo
13.
Inflamm Bowel Dis ; 21(8): 1926-34, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25985247

RESUMO

BACKGROUND: Development of fibrosis and subsequent stricture formation in Crohn's disease (CD) increases morbidity and rates of surgery and reduces patients' quality of life. There are currently no biomarkers of intestinal fibrosis that might allow earlier identification and better management of patients at increased risk of stricture formation. METHODS: MicroRNA profiling of serum from CD patients was used to identify microRNAs associated with stricture formation. Differential expression of miR-19a-3p and miR-19b-3p was validated by quantitative PCR in independent CD cohort of stricturing and nonstricturing patients (n = 46 and n = 62, respectively). Levels of miR-19a-3p and miR-19b-3p were also quantified in baseline serum samples, and expression compared between CD patients who subsequently developed stricture and those who did not (n = 11 and n = 44, respectively). RESULTS: Serum levels of miR-19a-3p and miR-19b-3p in the array were lower in CD patients with a stricturing phenotype than in control CD patients (P = 0.007 and 0.008, respectively). The reduction in miR-19a-3p and 19b-3p was verified in a second cohort (P = 0.002). The association of miR-19-3p with stricturing CD was independent of potential confounding clinical variables, including disease duration, disease activity, site, gender, and age. Serum analyses in patients with 4 years of follow-up support the hypothesis that reduced miR-19a-3p and miR-19b-3p predate stricture development with a trend toward significance (P = 0.077 and P = 0.060, respectively). CONCLUSIONS: These data identify miR-19-3p as a potential circulating marker of stricturing CD. Our data show that microRNAs have utility as noninvasive biomarkers of stricturing CD. Further longitudinal studies are required to determine the prognostic value of miR-19-3p at diagnosis.


Assuntos
Biomarcadores/sangue , Constrição Patológica/genética , Doença de Crohn/diagnóstico , Doença de Crohn/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Adulto , Estudos de Casos e Controles , Constrição Patológica/sangue , Constrição Patológica/diagnóstico , Doença de Crohn/sangue , Feminino , Seguimentos , Perfilação da Expressão Gênica , Humanos , Masculino , MicroRNAs/sangue , Fenótipo , Prognóstico , Estudos Prospectivos , Qualidade de Vida , Reação em Cadeia da Polimerase em Tempo Real , Adulto Jovem
14.
Inflamm Bowel Dis ; 21(5): 1141-50, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25636122

RESUMO

Inflammation often precedes fibrosis and stricture formation in patients with Crohn's disease. Established medical therapies reduce inflammation, but there are currently no specific therapies to prevent fibrosis or treat established fibrosis. Our understanding of the pathogenic processes underpinning fibrogenesis is limited compared with our knowledge of the events initiating and propagating inflammation. There are several biomarkers for intestinal inflammation, but there are none that reflect the development of fibrosis. MicroRNAs (miRNAs) are regulators of cellular activities including inflammation and fibrosis and may serve as biomarkers of disease processes. Differential serum and mucosal miRNA expression profiles have been identified between patients with inflammatory bowel disease with active and inactive inflammatory disease. In contrast, studies in patients with fibrotic phenotypes are comparatively few, although specific miRNAs have defined roles in the development of fibrosis in other organ systems. Here, we discuss the most recent research on miRNA and fibrogenesis with a particular emphasis on Crohn's disease. We also anticipate the potential of miRNAs in fulfilling current unmet translational needs in this patient group by focusing on the role of miRNAs as modulators of fibrogenesis and on their potential value as serum biomarkers and therapeutic targets in the management of fibrosis.


Assuntos
Biomarcadores/análise , Biomarcadores/sangue , Doença de Crohn/complicações , Fibrose/diagnóstico , Intestinos/patologia , MicroRNAs/genética , Fibrose/etiologia , Fibrose/metabolismo , Fibrose/prevenção & controle , Humanos , Prognóstico
15.
Cell Tissue Res ; 360(3): 749-60, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25238996

RESUMO

The epithelial monolayer of the intestine is a selective barrier permitting nutrient and electrolyte absorption yet acting to protect the underlying tissue compartments and cellular components from attack and infiltration by antigens, bacteria and bacterial products present in the lumen. Disruption of this barrier has been associated with inflammatory bowel disease (IBD). The adherens junction (AJ), together with tight junctions (TJ) and desmosomes, form an apical junction complex that controls epithelial cell-to-cell adherence and barrier function as well as regulation of the actin cytoskeleton, intracellular signalling pathways and transcriptional regulation. Numerous studies and reviews highlight the responses of TJs to physiological and pathological stimuli. By comparison, the response of AJ proteins, and the subsequent consequences for barrier function, when exposed to the IBD inflammatory milieu, is less well studied. In this review, we will highlight the roles and responses of the AJ proteins in IBD and provide suggestions for future studies. We will also consider recently proposed therapeutic strategies to preserve or restore epithelial barrier functions to prevent and treat IBD.


Assuntos
Junções Aderentes/metabolismo , Caderinas/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , beta Catenina/metabolismo , Junções Aderentes/química , Animais , Epitélio/patologia , Humanos , Mediadores da Inflamação/metabolismo , Doenças Inflamatórias Intestinais/terapia
16.
Clin Sci (Lond) ; 127(5): 341-50, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24641356

RESUMO

Intestinal fibrosis with stricture formation is a complication of CD (Crohn's disease) that may mandate surgical resection. Accurate biomarkers that reflect the relative contribution of fibrosis to an individual stricture are an unmet need in managing patients with CD. The miRNA-29 (miR-29) family has been implicated in cardiac, hepatic and pulmonary fibrosis. In the present study, we investigated the expression of miR-29a, miR-29b and miR-29c in mucosa overlying a stricture in CD patients (SCD) paired with mucosa from non-strictured areas (NSCD). There was significant down-regulation of the miR-29 family in mucosa overlying SCD compared with mucosa overlying NSCD. miR-29b showed the largest fold-decrease and was selected for functional analysis. Overexpression of miR-29b in CD fibroblasts led to a down-regulation of collagen I and III transcripts and collagen III protein, but did not alter MMP (matrix metalloproteinase)-3, MMP-12 and TIMP (tissue inhibitor of metalloproteinase)-1 production. TGF (transforming growth factor)-ß1 up-regulated collagen I and III transcripts and collagen III protein as a consequence of the down-regulation of miR-29b, and TGF-ß1-induced collagen expression was reversed by exogenous overexpression of miR-29b. Furthermore, serum levels of miR-29 were lower in patients with stricturing disease compared with those without. These findings implicate the miR-29 family in the pathogenesis of intestinal fibrosis in CD and provide impetus for the further evaluation of the miR-29 family as biomarkers.


Assuntos
Colágeno Tipo III/biossíntese , Colágeno Tipo I/biossíntese , Doença de Crohn/patologia , MicroRNAs/biossíntese , Adolescente , Adulto , Idoso , Colágeno Tipo I/genética , Colágeno Tipo III/genética , Constrição Patológica/metabolismo , Doença de Crohn/genética , Regulação para Baixo , Fibrose , Humanos , Mucosa Intestinal/metabolismo , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Fator de Crescimento Transformador beta1/farmacologia , Regulação para Cima
17.
Inflamm Bowel Dis ; 20(3): 514-24, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24492313

RESUMO

BACKGROUND: NADPH oxidase-derived reactive oxygen species, such as H2O2, are part of the intestinal innate immune system but may drive carcinogenesis through DNA damage. We sought to identify the predominant enzyme system capable of producing H2O2 in active ulcerative colitis and assess whether it is affected by 5-aminosalicylic acid (5-ASA). METHODS: We studied human mucosal biopsies by expression arrays, quantitative real-time polymerase chain reaction for NADPH oxidase family members, in situ hybridization (DUOX2 and DUOXA2) and immunofluorescence for DUOX, 8-OHdG (DNA damage), and γH2AX (DNA damage response) and sought effects of 5-ASA on ex vivo cultured biopsies and cultured rectal cancer cells. RESULTS: DUOX2 with maturation partner DUOXA2 forms the predominant system for H2O2 production in human colon and is upregulated in active colitis. DUOX2 in situ is exclusively epithelial, varies between and within individual crypts, and increases near inflammation. 8-OHdG and γH2AX were observed in damaged crypt epithelium. 5-ASA upregulated DUOX2 and DUOXA2 levels in the setting of active versus quiescent disease and altered DUOX2 expression in cultured biopsies. Ingenuity pathway analysis confirmed that inflammation status and 5-ASA increase expression of DUOX2 and DUOXA2. An epithelial cell model confirmed that cultured cancer cells expressed DUOX protein and produced H2O2 in response to hypoxia and 5-ASA exposure. CONCLUSIONS: Both DUOX2 and DUOXA2 expression are involved specifically in inflammation and are regulated on a crypt-by-crypt basis in ulcerative colitis tissues. Synergy between inflammation, hypoxia, and 5-ASA to increase H2O2 production could explain how 5-ASA supports innate defense, although potentially increasing the burden of DNA damage.


Assuntos
Colite Ulcerativa/patologia , Neoplasias do Colo/patologia , Peróxido de Hidrogênio/metabolismo , Proteínas de Membrana/metabolismo , Mesalamina/farmacologia , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Adenoma/tratamento farmacológico , Adenoma/metabolismo , Adenoma/patologia , Anti-Inflamatórios não Esteroides/farmacologia , Western Blotting , Células Cultivadas , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Oxidases Duais , Imunofluorescência , Humanos , Hipóxia/metabolismo , Hipóxia/patologia , Hibridização In Situ , Inflamação/metabolismo , Inflamação/patologia , Proteínas de Membrana/genética , NADPH Oxidases/genética , Oxidantes/metabolismo , Oxirredução , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...